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CLASSIFICATION OF INTEGRAL LATTICES WITH 
LARGE CLASS NUMBER 

RUDOLF SCHARLAU AND BORIS HEMKEMEIER 

ABSTRACT. A detailed exposition of Kneser's neighbour method for quadratic 
lattices over totally real number fields, and of the sub-procedures needed for 
its implementation, is given. Using an actual computer program which auto- 
matically generates representatives for all isomorphism classes in one genus of 
rational lattices, various results about genera of i-elementary lattices, for small 
prime level X, are obtained. For instance, the class number of 12-dimensional 
7-elementary even lattices of determinant 76 is 395; no extremal lattice in the 
sense of Quebbemann exists. The implementation incorporates as essential 
parts previous programs of W. Plesken and B. Souvignier. 

1. INTRODUCTION 

We deal with integral lattices L in euclidean spaces, i.e. L = /vl + ... + 7v, 
consists of the integral linear combinations of a basis v1, ..., v? of a real (or rational) 
vector space V, equipped with a positive definite symmetric bilinear form. Integral 
means that the form takes integral values on the lattice: (x, y) e Z for all x, y e L. 
Classification of course means classification up to isometry. We refer to [9], Chap. 10 
and [4], Chap. 15 for general results about integral lattices (or, equivalently, integral 
quadratic forms) and their classification, and to [1], [11], [15], [16], [19] for more 
specialized investigations close to the subject of the present paper. We follow the 
notation used in [16]. 

The class number h(n, d) of lattices in dimension n and determinant d tends to 
infinity rapidly with n and d. This even holds for forms in a specified genus [12]. 
Therefore known classifications have been restricted to small values of n or d, or 
have been subject to further restrictions within one genus of lattices. The aim of 
this paper is to present a computer program which, for class numbers up to several 
hundreds and dimensions up to about 16, automatically generates all lattices (in 
terms of Gram matrices) of a given genus, deletes forms equivalent to previous ones, 
and finally produces a list of representatives for all isometry classes. In particular, 
the class number of the genus is obtained. Although some of the papers quoted 
above are partially computer assisted in the sense that certain auxiliary calculations 
have been carried out with the aid of a computer, a general approach like the present 
one up to now has been made only in dimension at most 4 [17]. 

The principal method used for our algorithm is well known: it is Kneser's method 
of neighbouring lattices, more precisely the theorem of [8] saying that (under mild 

Received by the editor January 11, 1995 and, in revised form, October 7, 1990. 
1991 Mathematics Subject Classification. Primary llE41; Secondary llH55, 11-04. 
Key words and phrases. Lattice, integral quadratic form, class number of genus, neighbour 

method, p-elementary lattice, extremal modular lattice. 

( 1998 American Mathematical Society 
737 



738 RUDOLF SCHARLAU AND BORIS HEMKEMEIER 

conditions) every lattice in a genus can be obtained from a given one via a finite 
sequence of consecutively neighbouring lattices (see also Section 2 below). The 
implementation of this method in dimensions 3 and 4 given by Schulze-Pillot [17] 
heavily relies dn the existence of a very fast test for isometry, coming from the 
existence of an almost unique normal form for the Gram matrix with respect to 
a reduced basis. This no longer holds in higher dimensions. Our main tool then 
is the-mathematically straightforward-idea of calculating the neighbours of a 
lattice only up to the action of the orthogonal group of that lattice. Results like 
those of [16], or already known tables of quaternary forms indicate that even for 
large class number it often happens that every lattice in the genus in question has 
a large orthogonal group. However, actual theorems on the relation between the 
mass, the class number, the sizes of the orthogonal groups, and the diameter of the 
neighbour graph on isometry classes are hardly known. 

The methods for fast generation of orthogonal groups and for an efficient test 
for isometry that we use are described in [13] and [14]. We use, as subroutines of 
our program, implementations of the ideas of [14] kindly provided to us by Bernd 
Souvignier. 

In the third section of this paper, we report on explicit results obtained by 
our program. We treat certain genera (of determinant ?T/2) containing ?-modular 
lattices, for small prime numbers X, and suitable dimensions n. Thereby we answer 
some questions about modularity of ?-elementary lattices and about the existence 
and uniqueness of extremal modular lattices which were posed (implicitly) in the 
work of Quebbemann [15]; cf. also [16], Section 4. 

2. THE METHOD 

In this section we want to explain in some detail how Kneser's method of 
neighbouring lattices is used in a practical and efficient way to produce, starting 
from one Gram matrix G (always assumed to be positive definite), Gram matrices 
G = GI, ... ., Gh which are representatives for all isometry classes in the genus 
of L. A detailed account of the neighbour method, including a sketch of the under- 
lying theory, has been given recently in [17]. Nevertheless, we found it convenient 
to recall a few facts here, in particular, concerning the uniqueness of the neighbour 
defined by a certain congruence class of vectors. At the same time, we take the 
opportunity to formulate the main facts for the general case of lattices over (to- 
tally real) algebraic number fields. The neighbour method has indeed recently been 
applied to quaternary lattices over real quadratic fields, including cases where the 
class number of the field is not one, [6]. For the calculation of a basis and thus 
a Gram matrix of a neighbouring lattice we use a method which for p 74 2 differs 
from the method proposed in Step 3 of [17]. The main reason why we introduced 
our method (the algorithm N-basis described below) is that it works in the general 
number field case. It appears to be more straightforward also in the case of rational 
integers. 

We fix the following notation: 

o: is the ring of integers in a totally real number field F, 
L: is an integral o-lattice in an F-vector space with a totally positive definite 

symmetric bilinear form, 
ZL: is the determinant- (or volume-)ideal of L, 
p: is a prime ideal in o not dividing ZJL. 
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Definition 2.1. a) Two lattices L and L' are called p-neighbours if L/(L n L') 
o/p L'/(L n L') (as o-modules). 

b) For given L and v E L.\ pL, the lattice 

L(v) :=L, +p-1v, where L, {x E L I (x,v) E p} 

is called the p-neighbour of L with respect to v. 

In the situation of b), we have L, :& L because of our general assumption p t ?L, 
and consequently L n L(v) = L, (since L/LV - olp is a simple o-module), and L 
and L(v) are indeed neighbours in the sense of a). Conversely, if L and L' are as in 
a), we can write L' = L(v), where v = 7rw, and w is an arbitrary element in L' . L, 
and 7r E p - p . (To check this, observe that L n L' C Lv, and equality must hold 
because of the assumption on L/LnL'.) We observe that the line (o/p)v+pL in the 
o/p-vector-space L = LIpL is uniquely determined by the neighbour L(v), since 
it is equal to the orthogonal complement of the hyperplane L n L' with respect to 
the regular o/p-valued bilinear form induced on L. Pushing these considerations on 
little further leads to the following proposition (cf. [17], properties (iii), (vi), (vii)). 

Proposition 2.2. a) Assume that p does not divide 2. For a given isotropic residue 
class v = v + pL E L := L/pL, that is (v, v) E p, there exists a vector U E v + pL 
with (U, -)E p2 and thus an integral neighbour L(%). Moreover, this neighbour is 
uniquely determined by the line (o/p)v. Conversely, each integral neighbour of L is 
obtained in this way, for a unique isotropic line (o/p)v c L. 

b) We assume that L is even and allow that p divides 2. For a given residue class 
v E L with (v, v) E 2p, there exists a vector v E U with (vU, ) E 2p2 and thus an 
even integral neighbour L(-). Moreover, this neighbour is uniquely determined by 
the line (o/p)u. Conversely, each even integral neighbour of L is obtained in this 
way, for a unique isotropic line (o/p)v c L. 

We want to emphasize that the correspondence between isotropic (lines of) 
residue classes in L and neighbours of L is really canonical in the sense that, if 
a vector is mapped under an isometry onto a multiple of another vector modp, 
then the first neighbour is mapped onto the second by this isometry. Thus, for 
listing all isometry classes of (even) neighbours of L, it is sufficient to list represen- 
tatives- for the orbits under 0(L) of vectors mod pL, and only up to multiplication 
by scalars modp. Since for p12 this statement cannot be found in the literature, 
and does not seem to be completely obvious even in the case o = 2, we present a 
proof. 

First, it is readily checked that 
(1) L(v) = L(av) for every a E o '. P. 

We next show that 
(2) v _ v' (mod pLv) => L(v) = L(v'). 

To see this, first notice that already v _ v' (mod pL) implies Lv = Lv . Now write 
v' = v+z, z E pLv. Then 

p_Vv/=VP-(v+z) Cp-v?+P-lz 
C p-lv+Lv = L(v), 

and thus L(v') = Lv + p-Vv' C L(v). For reasons of symmetry, we have equality. 
Now we start with an isotropic class v = v + pL, and we first observe that the 
condition (v, v) E p, respectively 24, really depends only on U. From now fix a 
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local prime element 7r Ep - P'. For U = v + iry, we can indeed solve the following 
congruence for y 

(v,Kv) -(v, v) + 27r(v, y) + 7r2(y, y) 

(v, v) + 27r(v, y) 
0 (mod p2, respectively 2p2), 

and (v, y) is unique mod p and thus the vector y unique mod Lv. Suppose we had 
started from another vector v' with v' av (mod pL) for some a E o --, p. We want 
to show that L(U) = L(v), where v' = v' + wy' is such that (v',v') 0_ (modp2, 
respectively 2p2 ). By (1), we have L(vU) = L(aU), and we may write aoU = v' + w, 
for some w e pL. Thus the desired equality reads 

L(v' + w) = L(v' + ?ry'). 

The fact that both vectors have norm divisible by p2, respectively 2p2, implies that 
w -7ry' mod pL, Now property (2) applies. 

We have observed previously that the converse statement of Proposition 2.2 
holds. 

We now come to the procedure N-Basis which, for given L and v E L . pL, 
produces a basis for the neighbour L(v). We consider the case of a general ground 
ring o, but for simplicity we shall restrict ourselves to the case of free lattices. The 
general theory of finitely generated torsion free modules over Dedekind domains 
then shows that any neighbour, more generally any lattice L' such that L/(LnL') - 

L'/(L n L') (as o-modules) is again free (the Steinitz-class remains unchanged). 
Thus our lattices are equal to on as modules, and are specified by a Gram matrix 
.G e onXn>, giving rise to the scalar product (v,w) = (v,w)G := vtGw, where v 
and w are column vectors. We shall furthermore assume that the prime ideal p is 
principal. The general case for quadratic fields has been treated recently in [6]. As 
it was seen above, the case p12 requires a special treatment. To unify the two cases 
as far as possible, we introduce the notation 

p i, if pt2, q-~ lp2, if p12. 

In addition to the trivial functions: operations in o, row vector times matrix, matrix 
times column vector (which in particular calculate scalar products), the algorithm 
uses the following functions (a and : are always arguments in o): 

rep-mod-q(a): representative of a (mod q) (in a fixed set of 
representatives Rq C o) 

mult-mod-q(a,/3) rep-mod-q(a .3) 
inv-mod-q(a): representative of a-'(mod q), where a , p. 

In the case p12, the simpler functions rep-mod-p, mult-mod-p and inv-mod-p, 
defined with p instead of q, will be used as well. In the following description of the 
procedure, we assume that the prime ideal p and a generating element 7r e p have 
been specified in advance. In practice, one has at least two versions of the program, 
one specifically for lo/pl = 2, using a fast arithmetic (modp), and avoiding the 
function normalize to be described in a moment, and another implementation 
for the general case, admitting p as an additional input variable, or choosing it 
automatically as the prime ideal of smallest norm not dividing DL. 

A vector v = (x1,.. ., xn) E On is called normalized if all xi are representatives 
(mod q), xi e Rq, and the first xi which is not in p equals 1. The following function 
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replaces a given vector v E On K pn by a normalized vector v* such that L(v) = 

L(v*): 
normalize(v): k k(v) :=min{i e {1,. .., n}I xi p} 

a inv-mod-q(xk) 
v - av (mod q). 

If an arbitrary vector v representing an isotropic class is given, i.e. with (v, v) E , 
respectively 2p, we will in a first preparatory step replace it by v - 7rae. Here 
the auxiliary vector e satisfies (e, v) p , and a = mult-mod-p((v, v), p3), where 

= inv-mod-p(2(e,v)), in the case p {2, and a = mult-mod-p((v,v)/2, 3), where 
= inv-mod-p((e, v)), in the case p12. The vector e may be chosen as one of the 

canonical basis vectors e1,.. ., en of on. The new vector then satisfies (v, v) e p2C 

respectively 2p12. A basis for the neighbouring lattice L(v), and thus a Gram matrix 
XtGX, where the columns of X are the basis vectors, is now determined as follows: 

Algorithm N-basis 
input (G, v) /7 assuming vtGv E p 2 2p 2 

v< normalize(v) 
k k(v) /as given by normalize /7 
find m E {1, ... ., nr} K {k} with e' Gv p 

ek :=v/7r 

em := Trem 
for (i= 1 to n, i7 k, i m) 

e' = ei- (eiGv/e' Gv)em (mod p) /7 this achieves (e',v) ep /7 
return (e/, e/ * *e/) 

To verify that this algorithm is correct, we first have to prove that an index m 
with (em, v) , p and m 74 k always exists. Assume the contrary, so that (ei, v) E p 

for all i 74 k. This means that U e M , where M c L is the subspace generated by 
the e-, i 74 k. Taking orthogonal complements given M C vU and for dimension 
reasons we have equality. In particular, U e M (recall that (v, v)- 0 (mod p), i.e. 
vc e '). But the choice of k was such that Xk , p, i.e. v , M, a contradiction. 

Now it is readily checked that the e' do indeed form a basis of L(v). They are 
all contained in L(v), since e' and the e', i 74 k, m are in Lv by definition. The 
matrix formed by the e' has determinant 1 (assume w.l.o.g. k = 1, m n): 

1/7r 0 0 . . . 0 
* 10...0 

* 0 1....~I 

. . . . .1 0 

* * * . . * ir 

So the sublattice of L(v) generated by the e' must coincide with L(v). 
We now say a few words about the main procedure of iterating the calculation 

of neighbours. First, one fixes an appropriate prime ideal p. Usually, one chooses 
a prime ideal of smallest norm not dividing the determinant of the lattice, in order 
to minimize the number of neighbours of one lattice. A further condition is that 
the quadratic form must be isotropic at this prime; this automatically holds in 
dimensions at least 5. The formal framework for the iteration is the following. 
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For a genus g let C be the set of all isometry classes [L] of lattices in g and 
E = {([L1], [L2]) E C x C L1 and L2 are neighbours}. The graph (C, E) is called 
the neighbour graph of g. 

The neighbour graph is finite and in general consists of several connected compo- 
nents each of which is a union of proper spinor genera. (See [9], ?102 for the notion 
of spinor genus and proper spinor genus.) All isometry classes of neighbours of a 
given class are generated using the above ideas. So the classification of all lattices 
in a genus 9 can be implemented as one or several walk(s) through the neighbour 
graph of g. 

We start with a given lattice and mark it "unexplored". Now we enter the 
following loop: If there is an "unexplored" lattice, mark it "explored", compute 
all its neighbours up to the action of its orthogonal group, test isometry with all 
lattices found before, insert the new one into the graph with mark "unexplored". 
The loop terminates once all lattices are "explored". For the computation of the 
complete neighbour graph we have to visit all vertices and to compute all edges. 
But usually we are only interested in the set of vertices and not in the set of -edges. 
This restriction allows some improvements. For example, in the most important 
case of a connected genus, we can use the mass formula (see [5]) as break condition 
for our loop. In view of the large number of triangles in a neighbour graph, we 
could organize the priority queue for choosing the next vertex to be explored in a 
more subtle way than Breadth-First Search (see [18]) is. Strategies like "choose an 
unexplored vertex with a minimal number of vertices with distance equals 1 (or 2) 
from it" are usually faster than Breadth-First Search or Depth-First Search. 

An important subroutine in the computation of all classes of neighbours of one 
fixed lattice is the computation of orbits of vectors modulo p under the operation 
of the (p-reduced) orthogonal group. This is done via union-find [18]. The same 
applies to orbits on short vectors. 

One particular version of our program handles 2-neighbours over the rational 
integers 2. This special case can be implemented in a very efficient way, because 
the construction of neighbours is done using bit arithmetic in F2. This program 
covers all examples treated in Section 3. 

We finish this section with a few words about the connected components of the 
neighbour graph. We assume that the dimension is at least 3. As was remarked 
above, the graph is connected if the genus consists of only one proper spinor genus. 
Over the rational integers, this holds under the condition that, for each prime q, the 
lattice localized at q contains at least one two-dimensional (even if q = 2) Jordan 
component. This is fulfilled for practically all interesting classes of lattices, for 
instance lattices of square-free level. The criterion follows from a general theorem 
which describes the proper spinor genera within one genus as the elements of an 
appropriate 2-elementary quotient group of certain adelic groups; see [7], Satz 2 
and the discussion preceding Satz 5, and [9], ?102 for the general number field case. 
Over number fields, it will happen already for unimodular lattices that a genus 
consists of several proper spinor genera. On the other hand, a genus consisting say 
of two proper spinor genera can be connected with respect to an appropriate prime 
p. Exact criteria can be derived from the proof of the above-mentioned theorem, 
and the knowledge of local spinor norms. The case of;even unimodular lattices over 
real quadratic fields already shows some general phenomena. If the field has class 
number one and the fundamental unit has norm -1, then there is only one proper 
spinor genus. If the fundamental unit has norm +1, there are two. For p-neighbours 
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with p generated by an element of positive norm, the two proper spinor genera are 
the connected components of the neighbour graph. If p is generated by an element 
of negative norm, the whol6 genus is connected with respect to p-neighbourhood. 
So, one will in general use a prime ideal of smallest norm, but if necessary carry out 
one neighbour step with a different prime to reach another connected component. 
Details and concrete applications can be found in [6]; see [2] for related results. 

We finally have to mention that for p dividing 2 (and lattices with determinant 
not divisible by p, as usual), the genus can actually change, due to the fact that 
the norm group (group of values modulo p of the form) will in general change. The 
norm group however is the only invariant of the localized lattice (the quadratic 
vector space being fixed). So for the rational integers, one only has to distinguish 
between even and odd lattices (and even ones will not always exist in the given 
space). It is true that the subgraph induced on the even lattices is still connected 
[17]. 

3. RESULTS 

We briefly recall a few definitions from [15] and [16]. A lattice is called ?- 
elementary, for some (prime) number X, if fL# C L. Its determinant then is of 
the form fm, O < m < n. For fixed m and odd X, all ?-elemnentary lattices (always 
assumed to be even) form one genus. The ?-scaled dual lattice ?(L#) is again 
?-elementary, of determinant Tn-m. A lattice is ?-modular if it is isometric to its 
?-scaled dual. This can only happen if n = 2m. For f _ 3 (mod 4), such lattices 
exist in all even dimensions. For instance, one can take the orthogonal sum of m 
copies of the binary lattice (I (e+j)/2) - 

For f = 2,3,5,7,11,23 Quebbemann defines the notion of an extremal modular 
?-elementary lattice. This roughly means that its minimum is as large as is allowed 
by the space of modular forms where the theta series lives. We recall the following 
values of the minimum of an extremal lattice: 

n 4 6 8 10 12 14 16 18 
f = 3: min 2 2 2 2 4 4 4 4 
?= 5: min 2 4 4 6 
?= 7: min 2 4 4 4 6 6 6 8 
f = 11: min 4 4 6 6 8 8 

For f = 11 and n = 16, the extremal modular form has a negative coefficient, 
and thus extremal lattices cannot exist. For f = 11 and n = 12, the non-existence 
has been proved by Nebe and Venkov [10], using the degree two theta series of a 
hypothetical extremal lattice and some facts about Siegel modular forms. 

In the following, we consider some of the ?-elementary genera containing modular 
lattices, for f = 3, 5, 7,11. All classifications have been checked by the mass formula. 
The masses are calculated using the formulas and tables given in [5]. The sign 
occurring in the genus symbol for the prime f which is needed for this calculation 
is determined from the existence conditions of [4], Chapter 15, Theorem 13. 

For f = 3 and n = 12 (genus of the Coxeter-Todd lattice), the classification had 
been obtained previously in [16], using a different method (root systems, glue codes, 
the mass formula). The classification for n < 10 is a trivial consequence. We only 
recall that the class number for n = 2,4,6, 8, 10, 12 is 1, 1, 1, 2, 3, 10, respectively; 
all lattices are modular, and all except for the Coxeter-Todd lattice are reflective, 
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in particular, have minimum 2. Here, we add a result concerning the situation in 
dimension 14. 

Proposition 3.1. The class number of 3-elementary even lattices of dimension 14 
and determtinant 37 is 29. There is a unique lattice with minimum 4. This lattice 
is modular and thus extremal modular. Its automorphism group is G2(3).2 of order 
27 36 7. 13, see [3] p. 60. For all other lattices in this genus, the order of the 
automorphism group is not divisible by 13. 

For t = 5, the genera in question exist only in dimensions divisible by 4. The 
result in dimension n = 8 mentioned in [16] should be completed by giving the root 
systems of the reflective lattices: 4A14 5A1, 2A22 5A2, D4 5D4, A4 5A4. In dimension 12, 
the structure of this genus is less pleasing. 

Proposition 3.2. 1 The class number of 5-elementary even lattices of dimnension 
12 and deterTninant 56 is 48. Among these lattices, 40 are modular, 4 are modular 
extremal, and 43 are indecomposable. 

We now come to the case of level t = 7 where we obtained the main res-ult of 
this paper. 

Theorem 3.3. There exists no 7-elementary even lattice of dimnension 12, deter- 
mninant 76, and with minimum 6. In particular, there exists no extremal 7-modular 
lattice of dimension 12. 

We recall that "usually" extremal lattices for a specified value of (n, ) do not 
exist, because the extremal modular form has a negative coefficient and thus cannot 
be a 0-series. The case (12, 7) is the first case where the non-existence is known 
although the modular form gives no obstruction. The proof of the theorem is 
obtained by classifying the whole genus: the class number is 395, and the minimum 
6 just never occurs. 

For level t = 7 and dimensions less than 12, we present the classification in some 
detail. 

Proposition 3.4. a) For n = 4,6,8, the genus of n-dirmensional 7-elementary, 
even lattices of determinant 7n/2 has class number 1, 3,8 respectively. All these 
lattices are modular. In each of these dimensions there exists a unique extremal 
lattice. The number of indecomposable lattices is 1, 2, 5 respectively. 

b) The class number of 7-elementary even lattices of dimension 10 and determi- 
nant 75 is 30. Among these lattices, 28 are modular, 4 are modular extremal, and 
22 are indecomposable. 

We now come to 11-elementary lattices. The 8-dimensional case is similar in 
size to the (10, 75)-case treated above. The structure of this genus is however more 
satisfactory, as the following result shows: 

Theorem 3.5. For n = 4,6,8, the genus of n-dimensional 11-elementary, even 
lattices of determinant 11n/2 has class number 3, 5, 31 respectively. All these lattices 
are modular. In each dimension there exists a unique extremal lattice. The number 
of indecomposable lattices is 2, 2, 23 respectively. 

In dimension 10, the question of existence of extremal 11-modular lattices is 
still easy in view of the Craig lattice. The following theorem complements this 
observation of H.-G. Quebbemann. 

1This result has been obtained independently by G. Nebe of the RWTH at Aachen. 
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Theorem 3.6. The class number of 10-dimensional 11-elementary, even lattices 
of determinant 115 is 297. In addition to the Craig lattice, there exists exactly one 
further lattice with minimtlm 6. It is modular and thus extremal; its automorphism 
group has order 25 32 5. 

In the following tables, we list the lattices of some of the above genera with their 
main invariants and further properties, namely the following: 

R(L) the root system of L (cf. [16]) 
0(L)I the order of the orthogonal group of L 
JA(L)j the order of O(L)/W(L), where W(L) is the Weyl group 
r2, r4 number of vectors of norm 2 resp. 4 
02, 04 number of orbits of O(L) on vectors of norm 2 resp. 4 
Properties NM non-modular 

E extremal 
R reflective 
D decomposable 

The ordering of the lattices within one table is as follows. The indecomposable 
ones are listed first; they are ordered by considering hierarchically the following 
criteria: 

largest minimum 
largest number of vectors of minimal norm 
largest rank of the root system 
largest order of the automorphism group 
smallest number of orbits on minimal vectors 

The decomposable lattices, say with r components of dimensions n1 > n2 > ... > 

n% are listed in lexicographic order with respect to the dimension vector (n1, ..., nr) 
and for fixed dimension vector, with respect to the previous ordering of the lower 
dimensional components. 

TABLE 1. t =7, n= 6 

number R(L) I0(L)I IA(L) I r2 r4 ?2 04 Properties 

1 253171 253171 0 42 0 1 E 
2 A37A3 2732 21 12 6 1 1 R 
3 3A137A1 2731 2131 6 24 1 2 D,R 

TABLE 2. f =7, n= 8 

number R(L) 0?(L)l IA(L) I r2 r4 02 04 Properties 

1 2832 2832 0 48 0 1 E 
2 D47D4 21333 2131 24 24 1 1 R 
3 2A227A2 2734 23 12 36 1 1 R 
4 A27A2 2533 2331 6 42 1 2 
5 2A127A1 29 25 4 44 1 3 
6 A1 7A1 273171 253171 2 46 1 2 D' 
7 A3Aj7A37A1 2932 21 14 34 2 3 D,R 
8 4A147A1 21132 2331 8 40 1 2 D,R 
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TABLE 3. f = 7, n =10 

number R(L) 1O(L)l JA(L)l r2 r4 02 04 Properties 

1 283151 283151 0 50 0 2 E 
2 253251 253251 0 50 0 2 E 
3 210 210 0 50 0 3 E 
4 2651 2651 0 50 0 2 E 
5 D57D5 2153252 21 40 90 1 2 R 
6 A47A4 283252 22 20 70 1 3 
7 A3A17A37A1 21032 22 14 64 2 4 
8 2A27A3 2933 24 12 62 1 3 NM 
9 A327A2 2933 24 12 62 1 3 NM 

10 A37A3 21132 25 12 62 1 3 
11 A22A17A227A1 2932 23 10 60 2 4 
12 4A147A1 21231 2431 8 58 1 3 
13 A2A17A27A1 2632 22 8 58 2 5 
14 A27A2 2732 25 6 56 1 2 
15 3A17A2 2732 2331 6 56 1 4 NM 
16 A237A1 2732 2331 6 56 1 5 NM 
17 2A127A1 2931 2531 4 54 1 4 
18 2A127A1 28 24 4 54 1 5 
19 2A127A1 28 24 4 54 1 7 
20 A17A1 28 26 2 52 1 3 
21 A17A1 2631 2431 2 52 1 4 
22 A17A1 2631 2431 2 52 1 5 
23 A17A1 21032 2832 2 52 1 2 D 
24 D4A17D47A1 21533 2131 26 76 2 3 D,R 
25 2A2A127A27A1 2934 23 14 64 2 3 D,R 
26 A2A17A27A1 2733 2331 8 58 2 4 D 
27 3A137A1 211 25 6 56 2 5 D 
28 2A127A1 2103171 263171 4 54 1 3 D 
29 A32A17A327A1 21232 22 16 66 2 4 D,R 
30 5A157A1 2133151 233151 10 60 1 2 D,R 

TABLE 4. t = 11, n= 6 

number R(L) |O(L)l IA(L)I r2 r4 02 04 Properties 

1 233151 233151 0 12 0 1 E 
2 A211A2 2433 2231 6 12 1 1 
3 A111A1 2531 2331 2 12 1 1 D 
4 A2A 11A2 "A1 2532 21 8 12 2 1 D,R 
5 3A131"A1 2731 2131 6 12 1 1 D,R 
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TABLE 5. t = 11, n = 8 

number R(L) I0(L)l A(L)l Ir2 r4 02 04 Properties 

1 263252 263252 0 0 0 0 E 
2 2732 2732 0 24 0 1 
3 2732 2732 0 24 0 1 
4 2531 2531 0 20 0 3 
5 2432 2432 0 18 0 1 
6 26 26 0 16 0 1 
7 2532 2532 0 12 0 1 
8 243151 243151 0 10 0 1 
9 2731 2731 0 8 0 1 

10 D411D4 21333 2131 24 24 1 1 R 
11 A411A4 273252 21 20 30 1 1 R 
12 A311A3 2832 22 12 20 1 3 
13 3A131"A1 2831 2231 6 28 1 2 
14 A211A2 2433 2231 6 18 1 1 
15 A211A2 2532 23 6 16 1 2 
16 2A121"A1 28 24 4 24 1 3 
17 2A121"A1 27 23 4 22 1 4 
18 2A121"A1 27 23 4 20 1 2 
19 A1 "A1 253151 233151 2 24 1 1 
20 A111A1 2631 2431 2 12 1 1 
21 A111A1 26 24 2 20 1 2 
22 A111A1 2431 2231 2 18 1 2 
23 A111A1 25 23 2 16 1 4 
24 A111A1 253151 233151 2 12 1 1 D 
25 A2A1 11A2 11A1 2632 22 8 24 2 2 D 
26 243151 243151 0 20 0 1 D 
27 A211A2 2633 2431 6 12 1 1 D 
28 2A2211A2 2734 23 12 36 1 1 D,R 
29 2A1211A1 2831 2431 4 16 1 2 D 
30 A22A111A2211A1 2832 22 10 28 2 2 D,R 
31 4A1411A1 21131 2331 8 24 1 1 D,R 
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TABLE 6. Table of masses and class numbers 

genus mass h 

(8,34) 190656 0.000006530510 2 

(10,35) 
533 1341 3 0.0000008925031 3 

597196800 21-65 

(1 ,6) 4649359 11_ 13__41_61 (12, 3 6 ) 4213820620800 219.38 52 72 0.000001103359 10 

( 7 1387737373 9 11 41 61 73-691 0.00001477762 29 (14,3 ~93908002406400213973 
8 34017205168248203 _ 11.412 612 73-547-691*1093 0.002695235 163 

(1 6 ,3 ) 3 4 1 2 5 6 2 8 2 36 3__ _ _ _ _ _ _ _ _ 12621235523420160000 - 229.310.54.72. 13 

(8,54) 
5239 

13.31 0.0003158154 5 16588800 21-45 

1256) 11126633863 _ 312.71-313-521 (12,505451500 7TT27W0.010562038 48 ( v ) ~~1053455155200 -217*38*52*7 

8) 382741967819368836662539 29-71-313-449-521-601-691-19531 30325.23 
12621235523420160000 - 219-310.54.72.13 .13 

(6,73) ___ = 0.004960317 3 1008 243- 

(8, 74) 20425 -52.19-43004370 
4644864 = 213.34.7 0.004397330 8 

(10,75) 981217 1943.1201 0.03379963 30 29030400 211.34.52.7 

(12, 76) 231951232951 - 19-191-1201-2801 4.458673 395 52022476800 219-34.52 72 

(14, 77) 5866363445756953 - 73-181-191 691 1201*2801 13921.72 ? 421382062080 218.38.5.72 

(4, 1 125 25832 
0.01736111 3 

(4112)611 
(6, 613 

- 61 0.03177083 5 
1920 -7.3 

(8114) 2615863 -19.37.612 (8, 1 1 4) 2658880 = 0.1576885 31 

(10, 115) 87493271 _ 17-19-37-7321 8.990177 297 9732096 215-33.11 
2 

16 571246055535605 - 5.19 .3221-7321-13421 15969 
__12____37838389248 -219.38.11 150 6_9 
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